LoRaWAN là gì? Sự khác biệt giữa LoRa và LoRaWAN

Thuật ngữ LoRaWAN đã được các bạn nghe nhiều trong các ứng dụng liên quan IoT, Smart City,…Lora và LoraWAN có gì khác nhau? Hãy cùng chúng tôi tìm hiểu khái niệm cơ bản về LoRaWAN và sự khác biệt giữa LoRa và LoRaWAN nhé !

LoraWan là gì ?

LoRaWAN là giao thức mạng năng lượng thấp, diện rộng (LPWA) được phát triển bởi Liên minh LoRa, kết nối không dây ‘hoạt động’ với internet trong các mạng khu vực, quốc gia hoặc toàn cầu, nhắm mục tiêu các yêu cầu chính của Internet of Things (IoT) như bi thông tin liên lạc hai chiều, dịch vụ bảo mật đầu cuối, di động và nội địa hóa.

LoRaWAN sử dụng phổ không được cấp phép trong các dải ISM để xác định giao thức truyền thông và kiến ​​trúc hệ thống cho mạng trong khi lớp vật lý LoRa tạo ra các liên kết giao tiếp tầm xa giữa các cảm biến từ xa và các cổng kết nối với mạng. Giao thức này giúp thiết lập nhanh chóng các mạng IoT công cộng hoặc riêng tư ở bất cứ đâu bằng phần cứng và phần mềm.

LoRa là lớp vật lý (tức là chip) và LoRaWAN là lớp MAC tức là phần mềm được đặt trên chip để cho phép kết nối mạng.

Các tính năng chính của hệ thống LoRaWAN

  • Tầm xa (>5 km ở khu vực đô thị, >10 km ở khu vực ngoại ô, >80 km ở đường ngầm)
  • Tuổi thọ pin dài (>10 năm)
  • Chi phí thấp (<5 USD/module)
  • Tốc độ dữ liệu thấp (0,3 bps – 50 kbps, thường khoảng ~ 10 kB/ngày)
  • Hỗ trợ bản địa hóa
  • Truyền Hai chiều
  • Đảm bảo ổn định
  • Hoạt động không cần license

Sự khác biệt giữa LoRa và LoRaWAN

Cả hai thuật ngữ thường được sử dụng đồng nghĩa, nhưng chúng có ý nghĩa khác nhau. LoRa đề cập đến một điều chế không dây cho phép giao tiếp với mức tiêu thụ điện năng rất thấp. LoRaWAN đề cập đến một giao thức mạng với chip LoRa để liên lạc. Nó dựa trên trạm gốc, có thể theo dõi 8 tần số với một số yếu tố trải rộng và gần 43 kênh.

Có thể sử dụng điều chế LoRa như điểm-điểm hoặc mạng sao mà không cần LoRaWAN. Cũng có thể sử dụng LoRaWAN như một mạng với các liên kết vô tuyến khác, nhưng điều này sẽ không thực sự thiết thực.

Về cơ bản, LoRa là lớp vật lý: chip. LoRaWAN là lớp MAC: phần mềm được đặt trên chip để kích hoạt kết nối mạng.

LoraWan hoạt động như thế nào?

Một trong những đặc điểm cơ bản của LoRaWAN là hoạt động trong phạm vi phổ không được cấp phép dưới 1GHz. Trong khi, WiFi hoạt động ở tần số được cấp phép cao hơn là 2.4GHz và 5GHz và 4G trong khoảng từ 2 đến 8GHz.

  • Hiện tại, một số băng tần ISM khu vực trong LoRaWAN là EU 868, EU 433, US 915 (Châu Mỹ) và AS 430 (Châu Á). Cấu trúc của LoRaWAN bao gồm hai lớp: Lớp vô tuyến vật lý, LoRa (Long Range – Tầm xa) và lớp mạng mà nền tảng LoRaWAN tồn tại. Hiện tại không có tài liệu trực tuyến về lớp vật lý, nhưng mọi người đang cố gắng giải mã nó.
  • Cấu trúc liên kết cơ bản của LoRaWAN có nguồn gốc từ đầu vào LoRa Alliance. Nó chứa hai bộ phận thiết yếu.
  • Cấu trúc sao tầm xa bao gồm một Network Server LoRaWAN ở trung tâm kết nối với các Gateway LoRa trung gian.
  • Từ các Gateway đó, các node cuối kết nối với các mô-đun cho các ứng dụng và nền tảng IoT. Các giao tiếp xảy ra theo cả hai hướng.

Kiến trúc hệ thống LoraWAN

Kiến trúc mạng LoRaWAN được triển khai theo cấu trúc liên kết hình ngôi sao – ngôi sao (so với cấu trúc liên kết Mesh, ví dụ: Zibgee).

Các mạng LoRaWAN được đặt trong cấu trúc liên kết sao có các trạm cơ sở chuyển tiếp dữ liệu giữa các node cảm biến và Network Server.

Giao tiếp giữa các node cảm biến và các trạm cơ sở đi qua kênh không dây sử dụng lớp vật lý LoRa, trong khi kết nối giữa các Gateway và máy chủ trung tâm được xử lý qua mạng dựa trên IP.

  • End nodes truyền trực tiếp đến tất cả các Gateway trong phạm vi sử dụng LoRa.
  • Gateway chuyển tiếp tin nhắn giữa các thiết bị đầu cuối và Network Server trung tâm sử dụng IP.

End nodes thường là cảm biến nhúng công nghệ LoRa. Các node thường có:

  • Các cảm biến (được sử dụng để phát hiện thông số thay đổi, ví dụ: nhiệt độ, độ ẩm, gia tốc kế, gps),
  • LoRa transponder để truyền tín hiệu qua phương thức truyền vô tuyến được cấp bằng sáng chế của LoRa
  • bộ điều khiển vi mô (với Bộ nhớ trên bo mạch) có thể có hoặc không

Các cảm biến có thể kết nối với chip transponder LoRa hoặc cảm biến có thể là một đơn vị tích hợp với chip transponder LoRa được nhúng bên trong.

Ưu điểm và nhược điểm của LoRaWAN

Ưu điểm của LoRaWAN

  • Cảm biến công suất thấp và vùng phủ sóng rộng được đo bằng km
  • Hoạt động trên tần số miễn phí (không có license), không có chi phí cấp phép trả trước để sử dụng công nghệ
  • Công suất thấp có nghĩa là tuổi thọ pin dài cho các thiết bị. Pin cảm biến có thể tồn tại trong 2 năm5 năm (Lớp A và Lớp B)
  • Thiết bị gateway LoRa đơn được thiết kế để chăm sóc hàng ngàn thiết bị đầu cuối hoặc node
  • Nó dễ dàng để triển khai do kiến ​​trúc đơn giản của nó
  • Nó được sử dụng rộng rãi cho các ứng dụng M2M / IoT
  • Kích thước tải trọng tốt hơn (100 byte), so với SigFox là 12 byte
  • Mở: một liên minh mở và một tiêu chuẩn mở. Công nghệ mở so với đối thủ SigFox
  • Không giới hạn số lượng tin nhắn hàng ngày tối đa (so với giới hạn SigFox là 140 / ngày)
  • LoRaWAN có lợi ích là liên minh với cách tiếp cận mở thay vì độc quyền (SigFox).
  • Tầm xa cho phép các giải pháp như ứng dụng thành phố thông minh.
  • Băng thông thấp làm cho nó lý tưởng cho việc triển khai IoT thực tế với ít dữ liệu hơn và / hoặc với việc truyền dữ liệu không đổi.
  • Chi phí kết nối thấp.
  • Không dây, dễ cài đặt và triển khai nhanh.
  • Bảo mật: một lớp bảo mật cho mạng và một lớp cho ứng dụng có mã hóa AES.
  • Giao tiếp hai chiều đầy đủ.
  • Được hỗ trợ bởi những người như CISCO, IBM và 500 công ty thành viên khác của Liên minh LoRa.

Nhược điểm của LoRaWAN

  • Không dành cho tải trọng dữ liệu lớn, tải trọng giới hạn ở 100 byte.
  • Không cho giám sát liên tục (trừ các thiết bị Class C).
  • Không phải là ứng cử viên lý tưởng cho các ứng dụng thời gian thực đòi hỏi độ trễ thấp hơn và yêu cầu thiết bị ràng buộc.
  • Tăng cường mạng lưới LoRaWAN: Sự phát triển của các công nghệ LPWAN, và đặc biệt là LoRaWAN, đặt ra những thách thức cùng tồn tại khi việc triển khai các gateway vào khu vực đô thị.
  • Nhược điểm của tần số mở là bạn có thể bị nhiễu tần số đó và tốc độ dữ liệu có thể thấp. (Đối với GSM hoặc tần số được cấp phép, bạn có thể truyền trên tần số đó mà không bị nhiễu. Các nhà khai thác GSM sử dụng tần số nhất định phải trả phí cấp phép lớn cho chính phủ để sử dụng các tần số đó. LoRa hoạt động trên các tần số mở và không cần trạng thái license.)

Phân biệt các loại Lora End-devices 

Cấu trúc phân lớp mạng của Lora

1. Class A – End-devices truyền nhận dữ liệu theo 2 hướng (Bi–directional) với đặc trưng cho khả năng tiêu thụ công suất thấp nhất:

– Đây là class mặc định phải được hỗ trợ trên các end-devices sử dụng LoRaWAN. Truyền thông với class A luôn được khởi tạo bởi các “end-devices” và theo cấu trúc hoàn toàn không đồng bộ. Mỗi một đường truyền dẫn “uplink” sẽ được theo sau bởi hai đường nhận “downlink” ngắn.

– Tiến trình truyền nhận được thiết lập bởi “end-devices” dựa trên nhu cầu giao tiếp của riêng nó thông qua sự biến thiên thời gian (dựa trên cấu trúc giao thức ALOHA).

– Class A hoạt động với các hệ thống end-device tiêu thụ công suất thấp, phù hợp cho các ứng dụng chỉ yêu cầu giao tiếp “downlink” từ server sau khi “end-device” đã thiết lập đường truyền “uplink”.

2. Class B – End-devices truyền nhận dữ liệu theo 2 hướng với việc tiếp nhận (receive slots) được thiết lập theo lịch trình

-End-devices theo Class B sẽ mở cửa sổ (windows) nhận theo thời gian đã được thiết lập, nó sẽ nhận được một tín hiệu báo đồng bộ từ Gateway. Điều này cho phép Server biết được khi nào end-device đang lắng nghe (listening).

3. Class C – End-devices truyền nhận dữ liệu theo 2 hướng với tiến trình “nhận” (receive slots) tối đa, mang lại độ trễ nhỏ nhất

– End-devices thuộc Class C sẽ liên tục mở luồng nhận và chỉ đóng khi thực hiện việc truyền dữ liệu. Dựa trên điều này, Server có thể khởi tạo đường truyền “downlink” bất cứ lúc nào trên giả định là bộ thu dữ liệu (receiver) của các end-device đang mở, do đó độ trễ được tối ưu xuống thấp nhất. Nhưng bù lại, bộ thu cũng tiêu hao một lượng điện năng (lên đến ~ 50mW). Cho nên Class C sẽ phù hợp cho các ứng dụng có nguồn cấp điện liên tục. Còn đối với các thiết bị chạy bằng pin, có thể dùng chuyển đổi hoạt động tạm thời giữa class A và class C. Điều này rất hữu ích cho việc xử lý các tác vụ như cập nhập “firmware” qua đường truyền không dây (over the air).

Phối hợp LoraWAN và Wifi

Ngày nay, Wi-Fi thường được triển khai để hỗ trợ các case studies IoT quan trọng trong khi LoRaWAN® được sử dụng cho các case studies IoT lớn. Khi được sử dụng song song, hai công nghệ hỗ trợ rất nhiều case studies IoT theo các ngành sau:

  • Tòa nhà thông minh / Khách sạn thông minh
  • Thành phố thông minh / làng thông minh
  • Địa điểm thông minh
  • Ô tô thông minh và giao thông vận tải
  • Người tiêu dùng

Các tùy chọn kỹ thuật để triển khai Wi-Fi và LoRaWAN® cho thấy cơ sở hạ tầng Wi-Fi hiện tại có thể dễ dàng được sử dụng để triển khai LoRaWAN® dưới dạng bổ trợ trên Điểm truy cập (AP) hoặc trong thiết bị hiện hữu.

Mức độ tích hợp (colocation hoặc hội tụ thiết bị) sẽ phụ thuộc vào nhu cầu bảo hiểm, mật độ cảm biến và yêu cầu kinh doanh như SLA. Tích hợp kỹ thuật sẽ được thảo luận từ các quan điểm frontend (thiết bị) và tích hợp phụ trợ (đám mây), cũng bao gồm các quy trình bảo mật và kết nối. Chi phí thấp hơn và hiệu quả hoạt động của việc triển khai lẫn nhau so với việc triển khai cả hai Mạng riêng biệt sẽ trở nên rõ ràng.

Wi-Fi và LoRaWAN® được triển khai rộng rãi trên toàn cầu trong các case studies thực sự được hỗ trợ bởi một hệ sinh thái mạnh mẽ, đồng thời cũng có sức mạnh tổng hợp. Ví dụ về các case studies này bao gồm:

  • Các nhà cung cấp thiết bị làm việc trên các giải pháp phần mềm và phần cứng tương hỗ (ví dụ: Multi-Tech, Gemtek, Ufi hoặc Ruckus đã kết hợp các điểm truy cập Wi-Fi / LoRaWAN®).
  • Các nhà sản xuất thiết bị IoT cung cấp các giải pháp kết hợp Wi-Fi & LoRaWAN® nhúng, như các trình theo dõi đa công nghệ như Abeeway, OFO, Maxtrack, Chipsafer và Gemtek.
  • Các thành phố hoặc cơ quan công cộng chuyển sang IoT: ER-Telecom ở Nga triển khai Wi-Fi và LoRaWAN® trên toàn thành phố tại 60 thành phố hàng đầu  hoặc thành phố Calgary đã bổ sung mạng Wi-Fi của mình bằng cơ sở hạ tầng LoRaWAN®.
  • Các MNO lái một chiến lược được cấp phép và không có license hài hòa như Orange và BT.
  • Các nhà khai thác không có license tập trung vào chiến lược LoRaWAN® IoT như Unitymedia tại Đức vàTata Communications ở Ấn Độ, Charter và Comcast ở Mỹ.
  • Các nhà lãnh đạo chuyển vùng / Liên kết thúc đẩy chiến lược hài hòa để kết nối nhiều công nghệ Kết nối IoT như Orange, Syniverse hoặc BSG.

Khi so sánh LoraWAN và wifi Theo Sơ đồ trên cho thấy công nghệ kết nối IoT được phân chia theo phạm vi và tốc độ dữ liệu:

  • Wi-Fi bao gồm các case studyngắn và trung bình, ở tốc độ dữ liệu cao (có thể đạt tới 1 GB / giây ). Lượng tiêu thụ pin cao hơn LoraWAN.
  • LoRaWAN® bao gồm các case studytầm xa, ở tốc độ dữ liệu thấp (0,3 KBps đến 50 KBps), với mức tiêu thụ pin cực thấp, đáp ứng thời lượng pin lên tới 5 đến 10 năm, tùy thuộc vào tần số giao tiếp của thiết bị.
  • Chẳng hạn, Wi-Fi sẽ có liên quan trong việc truyền thông tin video thời gian thực hoặc duyệt internet, trong đó LoRaWAN® sẽ liên tục cung cấp thông tin dựa trên sự kiện đến từ cảm biến nhiệt độ, mặc dù chúng ta có thể tìm thấy một số chồng chéo trong khu vực nhà thông minh và nhà thông minh nơi Wi-Fi đã hoạt động được 20 năm.

Cuối cùng, chúng ta có quyền hy vọng rằng việc triển khai đồng thời Wi-Fi và LoRaWAN® để hỗ trợ IoT sẽ có lợi ích lâu dài. Cả hai công nghệ đều có lịch sử thành công mạnh mẽ trên thị trường, lộ trình dài hạn và có định hướng rõ ràng để hỗ trợ thế giới 5G trong tương lai.

Làm thế nào để kết nối LoraWAN ?

Đối với người dùng cá nhân, điểm cộng lớn nhất của LoRaWAN là được sử dụng miễn phí nhờ cấu hình mở. Tất cả những gì bạn cần là một thiết bị để tận dụng bất kỳ mạng cục bộ nào có bảo mật 128-AES. Theo LoRa Alliance, LoRaWAN hiện có mặt ở hơn 100 quốc gia, với hơn 100 nhà khai thác hàng đầu trên toàn thế giới. Trong thực tế, lý do lớn nhất cho sự phổ biến của nó là chi phí rẻ khi quản lý các mạng ở xa.

Tùy thuộc vào nơi sinh sống, bạn có thể đăng ký một trong nhiều nền tảng LoRaWAN bên dưới.

  • Things Network: Với gần 60.000 nhà phát triển và hơn 5800 Gateway LoRa, Things Network là cộng đồng LoRoWAN mở lớn nhất trên thế giới. Bãi đậu xe thông minh, theo dõi gia súc và tưới tiêu thông minh là một vài ứng dụng khởi đầu mà người dùng có thể tham khảo.
  • AWS: Nếu đang sử dụng Things Network, người dùng có thể kết nối với hệ sinh thái IoT của Amazon.
  • LoRa Server: Nếu muốn kết nối với Google Cloud IoT, LoRa Server cung cấp một trong những lựa chọn thay thế tốt nhất.
  • Link Labs: Link Labs cung cấp phần cứng cho các giải pháp LoRaWAN.

Những điều cần cân nhắc về các quy định đối với LoRa

Các thiết bị LoRa truyền trong dải tần số mở,  không cần license của chính phủ để truyền phát. tức là LoRa hoạt động trong các dải tần số miễn phí license và người ta không cần license từ chính phủ hoặc tiểu bang, để truyền trên các tần số mở này.

LoRa sử dụng các tần số :

  • 415 Mhz
  • 868 Mhz
  • 915 Mhz

Tuy nhiên, điều quan trọng cần lưu ý là tần số tự do hoặc không có license khác nhau tùy theo từng quốc gia. Điều cực kỳ quan trọng là cấu hình chip transponder LoRa để truyền theo tần số chính xác tùy thuộc vào vị trí. Không tuân thủ có thể phải chịu các khoản tiền phạt và hình phạt nặng từ chính quyền local của các nước.

Dữ liệu LoRaWAN được truyền ở định dạng kỹ thuật số dưới dạng byte. Giới hạn thực tế cho việc truyền tải trọng dữ liệu đáng tin cậy trong các điều kiện khác nhau là 100 byte . Mặc dù có thể vượt lên trên một chút, tối đa 100 byte là một quy tắc hoạt động tốt.

Các mạng LoRaWAN đã được thử nghiệm thành công, với các tin nhắn 100 byte được gửi cứ sau 7 giây trong một khoảng thời gian dài. Tuy nhiên, trong thực tế, bất cứ điều gì thường xuyên hơn truyền một lần một phút không được khuyến khích sử dụng. Có thể một gateway duy nhất xử lý đồng thời hàng ngàn node LoRa.

Đăng nhận xét